

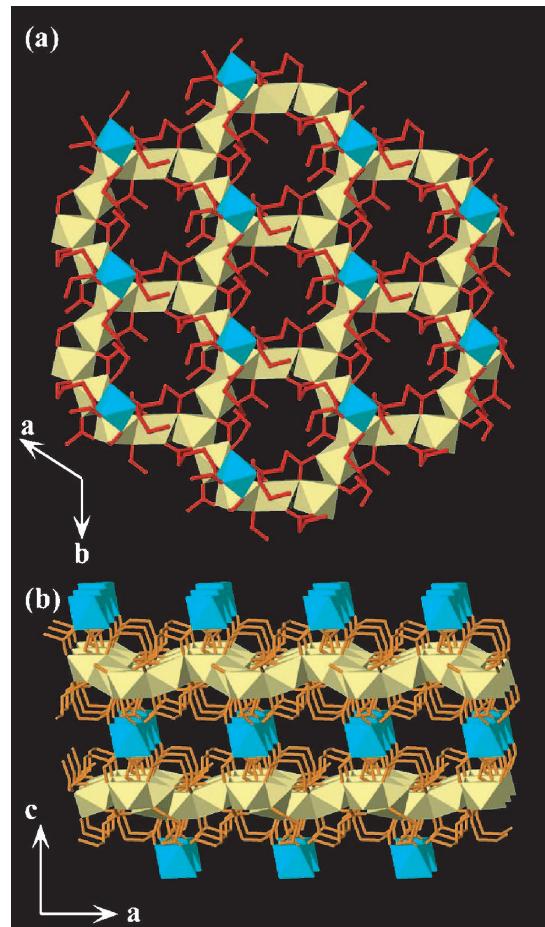
A Novel 3-D Network of Fe(II) Glutarate: 2-D Honeycomb-type Edge-shared FeO₆ Layers and Isolated Interlayer FeO₆ Octahedra

YooJin Kim, YunJu Park, Duk-Young Jung,* Sangjun Oh,[†] Dae Sung Kim,^{††} and Jung Chul Sur^{††}

Department of Chemistry-BK21 and the Institute of Basic Sciences, Sungkyunkwan University, Suwon 440-746, Korea

[†]National Research Laboratory for the Materials Sciences and Technology, Daejon, 305-701, Korea

^{††}Department of Physics, Wonkwang University, Iksan, 570-754, Korea


(Received July 22, 2003; CL-030659)

The 3-D structure of Fe(II) glutarate is built up from 2-D honeycomb layers of 12-membered FeO₆ polyhedra and pillar-like interlayer FeO₆ interconnected by Fe–O–C–O–Fe bridging modes, presenting ferrimagnetic coupling below 5 K.

The design and preparation of organic–inorganic hybrid framework on the basis of transition metals have become widespread over the past decade, and many of them were focused on their specific adsorption properties,¹ and magnetic/optical properties.^{2–4} The flexibility of ligand conformations as well as carboxylate bridging modes allow to prepare new open frameworks with corner and/or edge sharing M–O–M polyhedron. Our previous studies on the structural chemistry of the Fe(II) dicarboxylate systems prepared under hydrothermal conditions yield 3-D Fe succinate⁵ with 2-D edge-shared FeO₆ layers, and 3-D layered Fe adipate⁶ with 1-D edge/corner shared FeO₆ zigzag chain. The succinate and glutarate ligands have *anti* and *gauche* conformations in the reported metal–dicarboxylate compounds.^{7–9} For instance, one Ni succinate⁸ involves 3-D NiO₆ network formed by the *gauche* one exclusively and another related Ni succinate⁹ contains different conformations to produce more compact Ni–O–Ni connectivity. The possible conformations of glutarate ligands can be summarized as three types, *anti/anti* (*L1*), *anti/gauche* (*L2*), and *gauche/gauche* (*L3*). The conformational variation in the crystal structures is strongly related to the synthetic condition and applied metal cations as in the M glutarates, M = Mn (*L1*),¹⁰ Co (*L1*, *L3*)^{7c}, and Nd (*L1*, *L2*)^{7b}. In this paper, we present the synthesis and magnetic properties of a novel 3-D framework of iron glutarate, Fe(CO₂–(CH₂)₃CO₂), (**1**), containing *L3* exclusively.

The hydrothermal reaction of FeCl₂·4H₂O, glutaric acid, KOH and H₂O in a molar ratio of 1:1:1.3:350 (pH = 4.1) at 180 °C for 4 days afforded a large single crystal sample. Elemental analysis (%). Calcd for C₅H₆FeO₄ : C, 32.26; H, 3.23. Found: C, 32.60; H, 3.34.

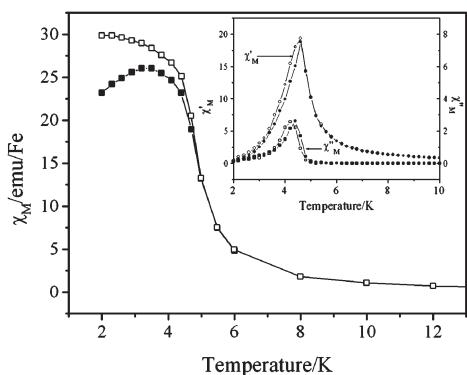

A single crystal X-ray diffraction study¹¹ reveals that **1** is a 3-D open framework with edge-sharing FeO₆ octahedral layers propagating along the *ab* plane (Figure 1). The honeycomb-type 2-D layer consists of 12-membered rings, six Fe(1)s in apexes and six Fe(2)s in sides, respectively. The glutarate ligands interconnected the 2-D FeO₆ sheets (yellow) and the pillar-like FeO₆ polyhedra (Fe(3), blue in Figure 1) between the layers to form a 3-D network. The resulting 2-D FeO₆ layers are stacked in hexagonal packing. It should be noted that the honeycomb layers in **1** are connected by the Fe–O–C–O–Fe modes without direct Fe–O–Fe bond, which is compared with Ni succinate compound involving direct Ni–O–Ni bonding mode along the *c* axis.⁸ The

Figure 1. Projection along the *c* axis (a) and *b* axis (b) shows the 3-D open framework of **1**. The 2-D FeO₆ network (yellow) and the pillar-like FeO₆ (blue) between the sheets are shown. All hydrogen atoms have been omitted for clarity.

Fe–O bond lengths of **1** range from 2.030(2) to 2.200(2) Å, and *cis* O–Fe–O angles range from 76.89(7) to 103.80(6)°.

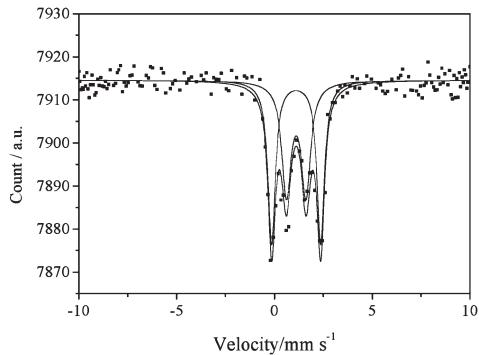

The Fe(2)O₆ shows the most strongly distorted octahedral environments and the Fe(3)O₆ coordinates six different dicarboxylate ligands leading to a nearly ideal octahedral geometry. The shortest Fe–Fe separation in **1** is 3.28 Å for the Fe(1)–Fe(2) of edge-sharing octahedral in 12-membered 2-D framework, which is smaller than those found in Fe succinate (3.33 Å)⁵ and in Fe adipate (3.47 Å).⁶ All the glutarate ligands of **1** present unique *gauche* (*L3*) conformation with torsional angles of 63° and 71°,^{7d} which is ascribed at least partially to the

Figure 2. Field-cooled (□) and zero-field cooled (■) magnetization curves at $H = 0.01$ T. Inset shows the plot of the real (χ_M') and imaginary (χ_M'') ac magnetic susceptibility vs temperature for the compound **1**. Data were collected under zero magnetic field at the frequencies of 100(○), 1000(●) Hz.

condensed Fe–O network formation in hydrothermal crystallization.

The magnetization measurements between 2.0 and 300 K were carried out using a SQUID magnetometer. The room temperature effective magnetic moment (μ_{eff}) of **1** is $5.43 \mu_B$ per iron, which is generally observed in high-spin Fe(II)($3d^6$) centers (5.10 – $5.70 \mu_B$)¹² and is close to $5.77 \mu_B$, the value reported for other Fe(II) dicarboxylates.^{5,6} The best linear fit of the reciprocal magnetic susceptibility $\chi^{-1}(T)$ data above 50 K for **1** yields $C = 3.71 \text{ emu/mol}$ and $\theta_p = -11 \text{ K}$, which suggests the antiferromagnetic interactions. Below 5 K, magnetization values depend on field-cooled and zero-field-cooled measurements, as illustrated in Figure 2. The canted antiferromagnetic ordering is confirmed by the peaks at around 4.5 K in the in-phase (χ_M') and out-of-phase component (χ_M'') in ac susceptibility measurements (inset in Figure 2). Within the honeycomb layers, stronger spin coupling through 90° superexchange interactions may occur because both Fe(1)O₆ and Fe(2)O₆ share their edges, according to the Goodenough's theory.¹³ The intralayer spin couplings may be predominant rather than interlayer ones and the contribution from the Fe(3)O₆.

Figure 3. Mössbauer spectra of compound **1** at 300 K.

⁵⁷Fe Mössbauer spectra of **1**, performed at 300 K, are in agreement with the structural results and the oxidation state of iron(II) in high spin octahedral coordination. (Figure 3) The spectra could be refined with two doublets (49% for Γ_1 IS = 1.12 mm s^{-1} , QS = 0.99 mm s^{-1} , FWHM = 0.57 mm s^{-1} and 51% for Γ_2 IS = 1.11 mm s^{-1} , QS = 2.51 mm s^{-1} , FWHM =

0.79 mm s^{-1}) in agreement with the expected ratio of two kinds of iron site, one belong to 2/6 Fe(1) and 1/6 Fe(3), the other to 3/6 Fe(2), respectively, based on the different multiplicities of the three sites. The Fe(2) is assigned to Γ_2 because of its strong distortion of octahedron environments.¹⁴

The present work shows that a 3-D framework with 2-D honeycomb network and pillar-like FeO₆ is built from glutarate ligand. The flexible ligand conformations may create structural diversity and also open the conformational isomerism in the supramolecular structures.

We thank the KOSEF, Korea, for financial support through the Electron Spin Science Center at POSTECH.

References and Notes

- a) M. Kondo, T. Okubo, A. Asami, S. Noro, T. Yoshitomi, S. Kitagawa, T. Ishii, H. Matsuzaka, and K. Seki, *Angew. Chem., Int. Ed.*, **38**, 140 (1999). b) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, *Science*, **295**, 469 (2002).
- 2) a) S. O. H. Gutschke, D. J. Price, A. K. Powell, and P. T. Wood, *Angew. Chem., Int. Ed. Engl.*, **40**, 1920 (2001). b) Z. Hung, M. Drillon, N. Masiocchi, A. Sironi, J. T. Zhao, P. Rabu, and P. Panissod, *Chem. Mater.*, **12**, 2805 (2000). c) H. Kumagai, C. J. Kepert, and M. Kurmoo, *Inorg. Chem.*, **41**, 3410 (2002).
- 3) G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, and J. D. Cashion, *Science*, **298**, 1762 (2002).
- 4) M. Sanselme, J. M. Grenèche, M. Riou-Cavellec, and G. Férey, *Chem. Commun.*, **2002**, 2172.
- 5) Y. J. Kim and D.-Y. Jung, *Bull. Korean Chem. Soc.*, **20**, 827 (1999).
- 6) Y. J. Kim and D.-Y. Jung, *Bull. Korean Chem. Soc.*, **21**, 656 (2000).
- 7) a) C. Livage, C. Egger, and G. Férey, *Chem. Mater.*, **11**, 1546 (1999). b) F. Serpaggi and G. Férey, *J. Mater. Chem.*, **8**, 2737 (1998). c) E. W. Lee, Y. J. Kim, and D.-Y. Jung, *Inorg. Chem.*, **41**, 501 (2002). d) B. Rather and M. J. Zaworotko, *Chem. Commun.*, **2003**, 830.
- 8) P. M. Forster and A. K. Cheetham, *Angew. Chem., Int. Ed. Engl.*, **41**, 457 (2002).
- 9) N. Guillou, C. Livage, W. Beek, M. Noguès, and G. Férey, *Angew. Chem., Int. Ed. Engl.*, **42**, 644 (2003).
- 10) Y. J. Kim, E. W. Lee, and D.-Y. Jung, *Chem. Mater.*, **13**, 2684 (2001).
- 11) Crystal data for **1** : $C_5H_6FeO_4$, rhombohedral, space group $R\bar{3}$, $a = 11.043(2)$, $b = 11.043(2)$, $c = 29.209(6) \text{ \AA}$, $V = 3085.0(10) \text{ \AA}^3$, $Z = 18$, $D_{\text{calcd}} = 1.802 \text{ Mg m}^{-3}$, Mo $K\alpha$ radiation ($\lambda = 0.71073 \text{ \AA}$), 724 reflections collected, 721 independent ($R_{\text{int}} = 0.0437$). The data collection was performed on a Siemens P4 automated four-circle diffractometer. The structure was refined by direct methods using SHELX-97 program with the final residual $R_1(I > 2\sigma(I)) = 0.0287$, $wR_2(I > 2\sigma(I)) = 0.0739$. Crystallographic data (excluding structure factors) for **1** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 209391. Copies of the data can be obtained free of charge in application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk).
- 12) R. L. Carlin, in "Magnetochemistry," Springer-Verlag, New York (1986).
- 13) J. B. Goodenough, in "Magnetism and the Chemical Bond, Interscience," New York (1963).
- 14) N. N. Greenwood and T. C. Gibb, in "Mössbauer Spectroscopy," Chaman and Hall, London (1971).