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The 3-D structure of Fe(II) glutarate is built up from 2-D
honeycomb layers of 12-membered FeO6 polyhedra and pillar-
like interlayer FeO6 interconnected by Fe–O–C–O–Fe bridging
modes, presenting ferrimagnetic coupling below 5K.

The design and preparation of organic–inorganic hybrid
framework on the basis of transition metals have become wide-
spread over the past decade, and many of them were focused on
their specific adsorption properties,1 and magnetic/optical prop-
erties.2–4 The flexibility of ligand conformations as well as car-
boxylate bridging modes allow to prepare new open frameworks
with corner and/or edge sharing M–O–M polyhedron. Our pre-
vious studies on the structural chemistry of the Fe(II) dicarbox-
ylate systems prepared under hydrothermal conditions yield 3-D
Fe succinate5 with 2-D edge-shared FeO6 layers, and 3-D lay-
ered Fe adipate6 with 1-D edge/corner shared FeO6 zigzag
chain. The succinate and glutarate ligands have anti and gauche
conformations in the reported metal–dicarboxylate com-
pounds.7–9 For instance, one Ni succinate8 involves 3-D NiO6

network formed by the gauche one exclusively and another relat-
ed Ni succinate9 contains different conformations to produce
more compact Ni–O–Ni connectivity. The possible conforma-
tions of glutarate ligands can be summarized as three types, an-
ti/anti (L1), anti/gauche (L2), and gauche/gauche (L3). The
conformational variation in the crystal structures is strongly re-
lated to the synthetic condition and applied metal cations as in
the M glutarates, M = Mn (L1),10 Co (L1, L3)7c, and Nd (L1,
L2)7b. In this paper, we present the synthesis and magnetic prop-
erties of a novel 3-D framework of iron glutarate, Fe(CO2-
(CH2)3CO2), (1), containing L3 exclusively.

The hydrothermal reaction of FeCl2�4H2O, glutaric acid,
KOH and H2O in a molar ratio of 1:1:1.3:350 (pH = 4.1) at
180 �C for 4 days afforded a large single crystal sample. Elemen-
tal analysis (%). Calcd for C5H6FeO4 : C, 32.26; H, 3.23. Found:
C, 32.60; H, 3.34.

A single crystal X-ray diffraction study11 reveals that 1 is a
3-D open framework with edge-sharing FeO6 octahedral layers
propagating along the ab plane (Figure 1). The honeycomb-type
2-D layer consists of 12-membered rings, six Fe(1)s in apexes
and six Fe(2)s in sides, respectively. The glutarate ligands inter-
connected the 2-D FeO6 sheets (yellow) and the pillar-like FeO6

polyhedra (Fe(3), blue in Figure 1) between the layers to form a
3-D network. The resulting 2-D FeO6 layers are stacked in hex-
agonal packing. It should be noted that the honeycomb layers in
1 are connected by the Fe–O–C–O–Fe modes without direct Fe–
O–Fe bond, which is compared with Ni succinate compound in-
volving direct Ni–O–Ni bonding mode along the c axis.8 The

Fe–O bond lengths of 1 range from2.030(2) to 2.200(2) �A, and
cis O–Fe–O angles range from 76.89(7) to 103.80(6)�.

The Fe(2)O6 shows the most strongly distorted octahedral
environments and the Fe(3)O6 coordinates six different dicar-
boxylate ligands leading to a nearly ideal octahedral geometry.
The shortest Fe–Fe separation in 1 is 3.28 �A for the Fe(1)–
Fe(2) of edge-sharing octahedral in 12-membered 2-D frame-
work, which is smaller than those found in Fe succinate
(3.33 �A)5 and in Fe adipate (3.47 �A).6 All the glutarate ligands
of 1 present unique gauche (L3) conformation with torsional an-
gles of 63� and 71�,7d which is ascribed at least partially to the

Figure 1. Projection along the c axis (a) and b axis (b) shows
the 3-D open framework of 1. The 2-D FeO6 network (yellow)
and the pillar-like FeO6 (blue) between the sheets are shown.
All hydrogen atoms have been omitted for clarity.
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condensed Fe–O network formation in hydrothermal crystalliza-
tion.

The magnetization measurements between 2.0 and 300K
were carried out using a SQUID magnetometer. The room tem-
perature effective magnetic moment (�eff) of 1 is 5.43mB per
iron, which is generally observed in high-spin Fe(II)(3d6) centers
(5.10–5.70mB)

12 and is close to 5.77mB, the value reported for
other Fe(II) dicarboxylates.5,6 The best linear fit of the reciprocal
magnetic susceptibility ��1(T) data above 50K for 1 yields
C ¼ 3:71 emu/mol and �p ¼ �11K, which suggests the antifer-
romagnetic interactions. Below 5K, magnetization values de-
pend on field-cooled and zero-field-cooled measurements, as il-
lustrated in Figure 2. The canted antiferromagnetic ordering is
confirmed by the peaks at around 4.5K in the in-phase (�M

0)
and out-of-phase component (�M

00) in ac susceptibility measure-
ments (inset in Figure 2). Within the honeycomb layers, stronger
spin coupling through 90� superexchange interactions may occur
because both Fe(1)O6 and Fe(2)O6 share their edges, according
to the Goodenough’s theory.13 The intralayer spin couplings may
be predominant rather than interlayer ones and the contribution
from the Fe(3)O6.

57Fe Mössbauer spectra of 1, performed at 300K, are in
agreement with the structural results and the oxidation state of
iron(II) in high spin octahedral coordination. (Figure 3) The
spectra could be refined with two doublets (49% for � 1 IS =
1.12mm s�1, QS = 0.99mm s�1, FWHM = 0.57mms�1 and
51% for � 2 IS = 1.11mm s�1, QS = 2.51mms�1, FWHM =

0.79mms�1) in agreement with the expected ratio of two kinds
of iron site, one belong to 2/6 Fe(1) and 1/6 Fe(3), the other to
3/6 Fe(2), respectively, based on the different multiplicities of
the three sites. The Fe(2) is assigned to � 2 because of its strong
distortion of octahedron environments.14

The present work shows that a 3-D framework with 2-D
honeycomb network and pillar-like FeO6 is built from glutarate
ligand. The flexible ligand conformations may create structural
diversity and also open the conformational isomerism in the
supramolecular structures.
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Figure 2. Field-cooled ( ) and zero-field cooled ( ) magneti-
zation curves at H = 0.01 T. Inset shows the plot of the real
(�M

0) and imaginary (�M
00) ac magnetic susceptibility vs tem-

perature for the compound 1. Data were collected under zero
magnetic field at the frequencies of 100( ), 1000( ) Hz.

Figure 3. Mössbauer spectra of compound 1 at 300K.
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